3.186 \(\int \frac {1}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))^2} \, dx\)

Optimal. Leaf size=109 \[ \frac {2 F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 a^2 d}+\frac {E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a^2 d}-\frac {\sin (c+d x) \sqrt {\cos (c+d x)}}{a^2 d (\cos (c+d x)+1)}-\frac {\sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2} \]

[Out]

(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/a^2/d+2/3*(cos(1/2*d*x+1
/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/a^2/d-sin(d*x+c)*cos(d*x+c)^(1/2)/a^2/
d/(1+cos(d*x+c))-1/3*sin(d*x+c)*cos(d*x+c)^(1/2)/d/(a+a*cos(d*x+c))^2

________________________________________________________________________________________

Rubi [A]  time = 0.18, antiderivative size = 109, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.217, Rules used = {2766, 2978, 2748, 2641, 2639} \[ \frac {2 F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 a^2 d}+\frac {E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a^2 d}-\frac {\sin (c+d x) \sqrt {\cos (c+d x)}}{a^2 d (\cos (c+d x)+1)}-\frac {\sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2} \]

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[Cos[c + d*x]]*(a + a*Cos[c + d*x])^2),x]

[Out]

EllipticE[(c + d*x)/2, 2]/(a^2*d) + (2*EllipticF[(c + d*x)/2, 2])/(3*a^2*d) - (Sqrt[Cos[c + d*x]]*Sin[c + d*x]
)/(a^2*d*(1 + Cos[c + d*x])) - (Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(3*d*(a + a*Cos[c + d*x])^2)

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 2748

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 2766

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[(b^2*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n + 1))/(a*f*(2*m + 1)*(b*c - a*d)), x] + Dis
t[1/(a*(2*m + 1)*(b*c - a*d)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[b*c*(m + 1) - a*d*
(2*m + n + 2) + b*d*(m + n + 2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d,
0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1] &&  !GtQ[n, 0] && (IntegersQ[2*m, 2*n] || (IntegerQ
[m] && EqQ[c, 0]))

Rule 2978

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*
x])^(n + 1))/(a*f*(2*m + 1)*(b*c - a*d)), x] + Dist[1/(a*(2*m + 1)*(b*c - a*d)), Int[(a + b*Sin[e + f*x])^(m +
 1)*(c + d*Sin[e + f*x])^n*Simp[B*(a*c*m + b*d*(n + 1)) + A*(b*c*(m + 1) - a*d*(2*m + n + 2)) + d*(A*b - a*B)*
(m + n + 2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)] &&  !GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c,
0])

Rubi steps

\begin {align*} \int \frac {1}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))^2} \, dx &=-\frac {\sqrt {\cos (c+d x)} \sin (c+d x)}{3 d (a+a \cos (c+d x))^2}+\frac {\int \frac {\frac {5 a}{2}-\frac {1}{2} a \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))} \, dx}{3 a^2}\\ &=-\frac {\sqrt {\cos (c+d x)} \sin (c+d x)}{a^2 d (1+\cos (c+d x))}-\frac {\sqrt {\cos (c+d x)} \sin (c+d x)}{3 d (a+a \cos (c+d x))^2}+\frac {\int \frac {a^2+\frac {3}{2} a^2 \cos (c+d x)}{\sqrt {\cos (c+d x)}} \, dx}{3 a^4}\\ &=-\frac {\sqrt {\cos (c+d x)} \sin (c+d x)}{a^2 d (1+\cos (c+d x))}-\frac {\sqrt {\cos (c+d x)} \sin (c+d x)}{3 d (a+a \cos (c+d x))^2}+\frac {\int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{3 a^2}+\frac {\int \sqrt {\cos (c+d x)} \, dx}{2 a^2}\\ &=\frac {E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a^2 d}+\frac {2 F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 a^2 d}-\frac {\sqrt {\cos (c+d x)} \sin (c+d x)}{a^2 d (1+\cos (c+d x))}-\frac {\sqrt {\cos (c+d x)} \sin (c+d x)}{3 d (a+a \cos (c+d x))^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 2.04, size = 304, normalized size = 2.79 \[ \frac {\cos ^4\left (\frac {1}{2} (c+d x)\right ) \left (-\frac {\csc \left (\frac {c}{2}\right ) \sec \left (\frac {c}{2}\right ) \sqrt {\cos (c+d x)} \left (7 \cos \left (\frac {1}{2} (c-d x)\right )+2 \cos \left (\frac {1}{2} (3 c+d x)\right )+3 \cos \left (\frac {1}{2} (c+3 d x)\right )\right ) \sec ^3\left (\frac {1}{2} (c+d x)\right )}{2 d}+\frac {4 i \sqrt {2} e^{-i (c+d x)} \left (3 \left (-1+e^{2 i c}\right ) \sqrt {1+e^{2 i (c+d x)}} \, _2F_1\left (-\frac {1}{4},\frac {1}{2};\frac {3}{4};-e^{2 i (c+d x)}\right )-2 \left (-1+e^{2 i c}\right ) e^{i (c+d x)} \sqrt {1+e^{2 i (c+d x)}} \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};-e^{2 i (c+d x)}\right )+3 \left (1+e^{2 i (c+d x)}\right )\right )}{\left (-1+e^{2 i c}\right ) d \sqrt {e^{-i (c+d x)} \left (1+e^{2 i (c+d x)}\right )}}\right )}{3 a^2 (\cos (c+d x)+1)^2} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[Cos[c + d*x]]*(a + a*Cos[c + d*x])^2),x]

[Out]

(Cos[(c + d*x)/2]^4*(((4*I)*Sqrt[2]*(3*(1 + E^((2*I)*(c + d*x))) + 3*(-1 + E^((2*I)*c))*Sqrt[1 + E^((2*I)*(c +
 d*x))]*Hypergeometric2F1[-1/4, 1/2, 3/4, -E^((2*I)*(c + d*x))] - 2*E^(I*(c + d*x))*(-1 + E^((2*I)*c))*Sqrt[1
+ E^((2*I)*(c + d*x))]*Hypergeometric2F1[1/4, 1/2, 5/4, -E^((2*I)*(c + d*x))]))/(d*E^(I*(c + d*x))*(-1 + E^((2
*I)*c))*Sqrt[(1 + E^((2*I)*(c + d*x)))/E^(I*(c + d*x))]) - (Sqrt[Cos[c + d*x]]*(7*Cos[(c - d*x)/2] + 2*Cos[(3*
c + d*x)/2] + 3*Cos[(c + 3*d*x)/2])*Csc[c/2]*Sec[c/2]*Sec[(c + d*x)/2]^3)/(2*d)))/(3*a^2*(1 + Cos[c + d*x])^2)

________________________________________________________________________________________

fricas [F]  time = 2.01, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\sqrt {\cos \left (d x + c\right )}}{a^{2} \cos \left (d x + c\right )^{3} + 2 \, a^{2} \cos \left (d x + c\right )^{2} + a^{2} \cos \left (d x + c\right )}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^2,x, algorithm="fricas")

[Out]

integral(sqrt(cos(d*x + c))/(a^2*cos(d*x + c)^3 + 2*a^2*cos(d*x + c)^2 + a^2*cos(d*x + c)), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{{\left (a \cos \left (d x + c\right ) + a\right )}^{2} \sqrt {\cos \left (d x + c\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^2,x, algorithm="giac")

[Out]

integrate(1/((a*cos(d*x + c) + a)^2*sqrt(cos(d*x + c))), x)

________________________________________________________________________________________

maple [A]  time = 0.52, size = 257, normalized size = 2.36 \[ \frac {\sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (12 \left (\cos ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-4 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \left (\cos ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+6 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, \left (\cos ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-16 \left (\cos ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+3 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1\right )}{6 a^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^2,x)

[Out]

1/6*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(12*cos(1/2*d*x+1/2*c)^6-4*(sin(1/2*d*x+1/2*c)^2)^
(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*cos(1/2*d*x+1/2*c)^3+6*(sin(1/2*
d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*cos(1/2*d*x+1/2*c)^3*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2
))-16*cos(1/2*d*x+1/2*c)^4+3*cos(1/2*d*x+1/2*c)^2+1)/a^2/cos(1/2*d*x+1/2*c)^3/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2
*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{{\left (a \cos \left (d x + c\right ) + a\right )}^{2} \sqrt {\cos \left (d x + c\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^2,x, algorithm="maxima")

[Out]

integrate(1/((a*cos(d*x + c) + a)^2*sqrt(cos(d*x + c))), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {1}{\sqrt {\cos \left (c+d\,x\right )}\,{\left (a+a\,\cos \left (c+d\,x\right )\right )}^2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(cos(c + d*x)^(1/2)*(a + a*cos(c + d*x))^2),x)

[Out]

int(1/(cos(c + d*x)^(1/2)*(a + a*cos(c + d*x))^2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \frac {\int \frac {1}{\cos ^{\frac {5}{2}}{\left (c + d x \right )} + 2 \cos ^{\frac {3}{2}}{\left (c + d x \right )} + \sqrt {\cos {\left (c + d x \right )}}}\, dx}{a^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cos(d*x+c)**(1/2)/(a+a*cos(d*x+c))**2,x)

[Out]

Integral(1/(cos(c + d*x)**(5/2) + 2*cos(c + d*x)**(3/2) + sqrt(cos(c + d*x))), x)/a**2

________________________________________________________________________________________